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Abstract
Purpose of Review Genomics has fundamentally transformed
our understanding of infectious diseases. Here, we provide an
overview of the insights gained from genomic investigations
of the melioidosis-causing pathogen, Burkholderia
pseudomallei.
Recent Findings B. pseudomallei has a large and complex
genome that encodes an impressive array of virulence
factors, some of which are variably present. Despite fre-
quent lateral gene transfer, phylogenomics resolves
B. pseudomallei populations to the continental level, en-
abling strain source tracing in non-endemic regions and
shedding light on the origin and anthropogenic spread of
B. pseudomallei populations across tropical and subtrop-
ical regions worldwide. Within-host evolution, outbreak
point-sources and antibiotic resistance can now be rapid-
ly elucidated using comparative genomic approaches.
Summary Genomics is an essential tool for understanding
the phylogeography, transmission, evolution, virulence, ep-
idemiology, and antibiotic resistance of B. pseudomallei. A

shift towards more detailed characterization of genetic var-
iation using RNA-Seq, Methyl-Seq, and genome-wide as-
sociation studies will provide additional insights into this
fascinating and deadly bacterium.

Keywords Burkholderia pseudomallei . Genomics .

Evolution . Phylogeography .Melioidosis . Antibiotic
resistance

Introduction

The environmental saprophytic bacterium Burkholderia
pseudomallei is the causative agent of the potentially life-
threatening infectious disease melioidosis. Arguably one of
the most important and underrecognized neglected tropical
diseases of our time [1], melioidosis has conventionally been
considered a disease confined to only a handful of endemic
tropical regions. Increasing awareness and detection of
B. pseudomallei in regions previously not considered endemic
for this organism has led to melioidosis cases being unmasked
in most tropical and subtropical locales worldwide [2]. Using
predictive modeling methods, the contribution of melioidosis
to global mortality has recently been estimated at 89,000
deaths annually, a rate similar to the much higher-profile dis-
ease measles [3•].

Althoughmelioidosis cases continue to be underreported in
some endemic regions, the importance of B. pseudomallei as a
formidable pathogen has been well recognized for some time.
In 1997, B. pseudomalleiwas added to the US select agent list
[4], and in 2012, this bacterium was included in the list of Tier
1 select agents, an elevated category reserved for infectious
agents posing the greatest biothreat risk to human and animal
health in the event of their deliberate misuse [5]. This in-
creased profile provided a much-needed boost for research
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of this pathogen, including genomics-based approaches. To
date, over 400 B. pseudomallei genomes from at least 33
countries have been made available on public databases.
This rich resource has enabled many previously unanswerable
questions about B. pseudomallei to be addressed at an unpar-
alleled level of resolution and accuracy. Salient examples in-
clude the development of DNA-based diagnostics for accurate
speciation of B. pseudomallei [6, 7] and its nearest genetically
related neighbors [6, 8–10], identification of diagnostic loci to
differentiate among B. pseudomallei strains [11, 12, 13••],
determination of the geographical origin of B. pseudomallei
[14••] and its subsequent dissemination across the globe [13••,
15•, 16•], detection of recombination patterns and restrictions
on gene flow [17], characterization of genome structure, pan-
genome diversity and virulence factors [8, 18, 19••, 20, 21],
identification of novel antibiotic resistance mechanisms [22•,
23, 24•, 25•], attribution of outbreak point sources [26•,
27–29], and fine-scale examination of within-host evolution-
ary processes [22•, 30, 31•, 32]. This review will focus on
these genomics-based studies and how they have advanced
our understanding of B. pseudomallei and melioidosis.

Next-Generation Sequencing Technologies The arrival of
the first high-throughput, high-output, and rapid next-
generation sequencing (NGS) technology in 2005 [33], which
was commercialized by 454 Life Sciences, heralded a para-
digm shift in microbial genetics research. Since then, NGS has
rapidly evolved in terms of its technological sophistication,
data quality, and accessibility. At the time of writing (early
2017), the cost of sequencing a B. pseudomallei genome with
100 bp paired-end reads to ×70 coverage using the Illumina
HiSeq platform was ~USD$76 per sample. This cost will con-
tinue to decrease as new and improved NGS technologies
emerge and demand increases. In addition to providing a
much richer source of genetic data, NGS yields a greater re-
turn on investment and now supersedes many genotypic
methods. For example, the relatively low expense of whole-
genome sequencing (WGS), a popular application of NGS,
means it now costs less to carry out than many genotyping
methods (e.g., multilocus sequence typing (MLST) [34],
~USD$100 per sample). Data analysis is also no longer a
bottleneck, with several freely available bioinformatics tools
for analyzing small through large microbial genome datasets
(e.g., breseq [35], NASP [36], and SPANDx [37•]). These
tools have been designed to find mutations relative to a refer-
ence sequence using re-sequencing data. SPANDx has been
optimized using B. pseudomallei as one of the model organ-
isms and is designed to compare hundreds and potentially
thousands of genomes in a single analysis by identifying
single-nucleotide polymorphisms (SNPs), small insertions-
deletions (indels), and larger deletions among strains using
Illumina, 454, or Ion Torrent sequence data [37•].

The First B. pseudomallei Genome In 2004, Holden and
coworkers [19••] published the first closed B. pseudomallei
genome of strain K96243, which was isolated in 1996 from a
diabetic patient in Khon Kaen, Thailand. This formative study
revealed that the B. pseudomallei K96243 genome is com-
prised of two replicons at 4.07 and 3.17 Mbp, corresponding
to chromosomes 1 and 2, respectively. This archetypal
B. pseudomallei strain encodes ~6300 genes, making it one
of the larger prokaryotic genomes currently known. The strik-
ingly high total %G + C (~70%) content of K96243 is punc-
tuated by 16 regions of lower %G + C content, identified as
genomic islands (GIs). These GIs comprise ~6% of the ge-
nome [19••] and encode for a variety of functions including
production of secondary metabolites and enhanced virulence
[20].

Genomics has been instrumental in identifying GIs as a
major source of genetic diversity among strains, with at least
71 distinct and variably present GIs identified in
B. pseudomallei [20]. The location of GIs are relatively con-
served, with the majority being inserted adjacent to tRNA
genes, a process mediated by a tRNA site-specific recombi-
nationmechanism. This site specificity has limited the number
of locations where GIs can insert into the genome [20].
Notably, the gene content of GIs, and their location and num-
ber, are highly variable among strains. A comparative geno-
mic analysis of 37 strains demonstrated that B. pseudomallei
has an “open” genome, driven largely by variation within GIs,
with 136 new genes identified with each new genome [18].
Remarkably, despite the open and highly variable nature of GI
loci, the overall gene order of the B. pseudomallei genome
outside GI regions is quite stable, even between distantly re-
lated strains [18].

Phylogenomic Analysis of B. pseudomallei Uncovers a
Strong Continental Signal B. pseudomallei has a strong pro-
pensity for homologous recombination, with a rate at least two
times greater than that of Streptococcus pneumoniae, itself
considered highly recombinogenic [14••]. Homologous re-
combination drives rapid genetic diversification, which pre-
sents a quandary when attempting to trace the origin of
B. pseudomallei strains. This factor is particularly problematic
when using genetic methods that rely on a small number of
loci, which greatly increases susceptibility to homoplasy, a
phenomenon whereby a shared genotype has arisen by con-
vergence rather than descent. However, certain aspects of
B. pseudomallei biology make it amenable to robust phylo-
geographic ascertainment, especially when large and deep ge-
netic datasets such as those generated byWGS are used. First,
unlike many other bacterial pathogens, B. pseudomallei is not
readily communicable, with only a small number of reported
human-to-human transmission cases (e.g., [38]); infections are
almost always acquired from contact with contaminated soil
or water. Second, long-range dispersal of B. pseudomallei is
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uncommon, with closely related B. pseudomallei strains in
endemic regions typically located not more than 45 km apart
[39, 40]. Finally, distinct restriction-modification systems
among different B. pseudomallei clades restrict gene flow be-
tween more distantly related taxa [17]. These fundamental
characteristics mean that, even in the face of very high rates
of homologous recombination, the B. pseudomallei genome
provides a reliable predictor of a given strain’s geographic
origin.

Pearson and colleagues (2009) provided the first
phylogenomic examination of B. pseudomallei origin and
transmission using strains isolated from Australia and Asia
[14 •• ] . This seminal s tudy, which compared 43
B. pseudomallei and related Burkholderia genomes using a
phylogenomic approach, was the first comprehensive compar-
ative genomic analysis carried out in B. pseudomallei. Based
on their phylogeny, the authors proposed an ancestral
Australian origin for B. pseudomallei, followed by a single,
and likely anthropogenically driven, introduction event into
Southeast Asia during a recent glacial period. This observa-
tion has since been consolidated by more recent genomic
studies that have used larger and more globally diverse strain
datasets [13••, 15•]. Figure 1a shows a contemporary analysis
of the phylogenic approach first described by Pearson and
colleagues. Using publicly available genomic data for 467
B. pseudomallei isolates recovered from 33 countries and
rooted with a closely related Burkholderia species, our up-
dated phylogeny confirms the original hypothesis that
B. pseudomallei evolved from an Australian ancestor. This
important discovery has shaped our understanding of
B. pseudomallei transmission between continents and has im-
pelled ongoing efforts to unmask melioidosis in regions not
previously considered endemic for B. pseudomallei (e.g., sev-
eral countries in Africa [41] and the Americas [42], as well as
Indonesia [43]).

Human activity has played a central role in the transmission
of B. pseudomallei between continents and may even be
singlehandedly responsible for its global dissemination. The
first WGS analysis of B. pseudomallei from Africa and the
Americas proposed an anthropogenically driven dissemina-
tion of this bacterium into tropical regions worldwide [16•].
African strains are much younger than Australian and Asian
strains according to phylogenomic analysis (Fig. 1b) and pos-
sess evidence of recent transmission from Asia, probably ini-
tially via the eastern island of Madagascar, which was
inhabited only 1500–2000 years ago by settlers from both
the African mainland and Indonesian Borneo. Subsequent
large-scale anthropogenic activity from Africa into the
Americas during the transatlantic slave trade in the fifteenth
through nineteenth centuries is thought to have driven the
dissemination of B. pseudomallei into this previously naïve
region [15•, 16•]. The anthropogenically driven introduction
of contaminated soil or water, or chronically infected animals,

livestock, or plants, have been raised as plausible explanations
for B. pseudomallei transmission between continents [44].
WGS of additional B. pseudomallei isolates collected from
geographically diverse locations over longer timescales will
be needed to address the role that humans may have played in
these rare yet significant transmission events.

On a much more recent timescale, re-introduction of a
Southeast Asian B. pseudomallei strain into northern
Australia has now been documented for the first time [13••].
In 2005, the first melioidosis case caused by ST-562, a MLST
genotype previously only seen in China and Taiwan, was doc-
umented in the hyperendemic “hotspot” of Darwin, Northern
Australia [13••]. Clinical cases in this region, which have been
closely monitored since 1989 as part of the ongoing Darwin
Prospective Melioidosis Study [45], showed that no cases pri-
or to 2005 were caused by this ST genotype. Although the
precise method of introduction into Darwin is unclear, it does
not appear to have been a widespread event, with environmen-
tal surveillance for this clone suggesting that, to date, its pres-
ence is limited to a restricted geographic region in the Darwin
region, and comparative genomic analysis revealing very low
levels of genetic diversity [13••]. Phylogenomic analysis was
critical for confirming the Asian origin of this clone (Fig. 1b)
due to the possibility for homoplasy usingMLST [46] or other
typing methods. This example provides a concerning demon-
stration of the relative ease of transmitting B. pseudomallei in
modern times where global trade and mass human transit are
now commonplace.

B. pseudomallei Virulence and Melioidosis Presentations
Are Highly Variable The classical presentation of
melioidosis is as an acute pneumonia with or without sepsis,
which occurs in approximately half of all cases in melioidosis-
endemic regions [45, 47]. Melioidosis can mimic multiple
infectious diseases and even some autoimmune disorders
and cancers [48]. Both disease presentation and severity can
differ based on geographic location; for example, mortality
rates in the hyperendemic regions of Northern Australia and
Southeast Asia are vastly different, at approximately 10 and
40%, respectively [48]. It has previously been postulated that
this difference in mortality rate is due to inequitable access to
intensive care facilities [49]; however, there remains the pos-
sibility that genetic differences among strains also contribute
to these disparate mortality rates. Further exploration using
genomic approaches such as microbial genome-wide associa-
tion studies may help to identify virulence loci that are over-
represented in Thai strains compared with Australian strains,
or conversely, the loss of virulence loci in Australian strains.
The open genome of B. pseudomallei differs based on locale,
with certain loci, including variable virulence factors, much
more prevalent in strains from particular regions compared
with others [13••, 15•]. Although the correlation of disease
severity and clinical presentations with genetic markers in
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B. pseudomallei is an ongoing area of investigation, a handful
of studies have already identified loci that correlate with spe-
cific clinical presentations or severity in humans [11] and in
the BALB/c mouse model of infection [21]. Comparative ge-
nomics has also identified variation within the lipopolysaccha-
ride biosynthesis pathway [50], which encodes an important
virulence determinant in B. pseudomallei, although the exact
consequence of this variation remains to be ascertained.

Source Attribution ofMelioidosis OutbreaksGenomics is a
powerful tool for examining, with very high resolution, the
probable origin (“point source”) of outbreaks. Because of the
typically short duration in an outbreak scenario, methods for
detecting rapidly evolving loci are essential. Prior to
the genomics era, multilocus variable-number tandem repeat
analysis (MLVA) was commonly used for detecting genetic
variation in bacterial strains sharing a very recent common
ancestor, such as a clonal infection, due to its characterization
of rapidly evolving repeat loci [51]. MLVA has been used to

identify differences in B. pseudomallei populations in clonal
outbreak clusters and even within an individual patient over a
very short duration [52, 53]. However, MLVA suffers from
many issues in B. pseudomallei, most problematic of which
are the interrogation of only a small fraction of the genome
and high rates of homoplasy. The roadblock of homoplasy can
be somewhat circumvented by the inclusion of another typing
method that examines more slowly evolving loci and is thus
less susceptible to the effects of homoplasy. For example, mul-
tiple studies have used MLST alone to determine whether
strains involved in an outbreak are clonally related [54, 55],
but due to the lack of resolving power, a solid conclusion is
not always able to be reached, especially if the outbreak occurs
in an endemic region where the disease is relatively common.
An improved fit with the epidemiological data is frequently
observed when a highly resolving technique, such as MLVA,
is combined with the more stable typing technique, MLST
[56]. The shift towards using WGS now provides a much
more robust methodology for point-source attribution of
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Fig. 1 Phylogenomic reconstruction of the global Burkholderia
pseudomallei population. a Maximum parsimony phylogenetic
reconstruction of a diverse B. pseudomallei dataset comprising 467
genomes from 33 countries. The tree was rooted with B. oklahomensis,
a member of the B. pseudomallei complex, and includes two other
B. pseudomal le i complex species (B. thai landensis and
B. humptydooensis) for comparison. This phylogeny demonstrates that
the Australian B. pseudomallei is ancestral to strains isolated elsewhere
globally, pointing to B. pseudomallei’s origins on this continent. b
Maximum parsimony phylogenetic reconstruction of B. pseudomallei
and B. mallei . The single transmission event of Australian

B. pseudomallei into Southeast Asia during a recent glacial period is
indicated by a black arrow. Subsequent transmission from Asia into
Madagascar and Africa, and then Africa into the Americas and
Caribbean, is denoted by an asterisk. This tree shows that B. mallei
resides on a node that groups most closely with South Asian strains,
suggesting that this equine-adapted subspecies evolved from a
B. pseudomallei strain from this region. B. mallei subsequently
disseminated into the other long known glanders-endemic regions in the
Middle East, Africa, and the Americas. The recent and unprecedented
transmission of an Asian clone, ST-562, into the Northern Territory is
labeled on both trees
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melioidosis outbreaks and bypasses the need to use multiple
typing techniques to correctly determine the nature of an out-
break [26•, 27, 28].

Within-Host Evolution of B. pseudomallei in the Human
Host Comparative genomics has been central in unraveling
the molecular mechanisms ofB. pseudomallei adaption during
its transition from an acute to a chronic infection. The longest-
known documented melioidosis case, an Australian woman
who continues to asymptomatically harbor B. pseudomallei
in her lungs since first being diagnosed with melioidosis in
2000 [31•], has provided a fascinating model for observing
ongoing B. pseudomallei evolution within a human host.
Notable genetic events in these B. pseudomallei strains that
have become fixed over time included the loss of
several virulence and immunogenic loci, inactivation of the
stress response sigma factor RpoS, and deletion of 221 genes
on chromosome 2 (285 kb, 4% of the genome); all of this has
occurred over a very short (11.5-year) evolutionary period.
Striking parallels were observed between this human-
adapted infection and the equine-adapted B. pseudomallei
clone, B. mallei. Approximately 50% of genes lost in the latter
isolates from the chronic melioidosis patient are also absent in
B. mallei, demonstrating that these regions are not necessary
for prolonged survival in a mammalian host [31•]. In another
chronic melioidosis case spanning 2.7 years, comparative ge-
nomics revealed that a subpopulation of the B. pseudomallei
isolates obtained from this patient had undergone large-scale
recombination events involving 1.3 Mbp (18%) of the ge-
nome, leading to dramatic genetic differences that were not
observable using MLSTalone [57]. Comparative genomics of
B. pseudomallei from four relapse melioidosis cases [30], an
acute infection [32], and seven chronic cystic fibrosis cases
[22•] has also shown that this bacterium can undergo rapid and
dramatic adaptive changes within the human host.

Identifying Novel Antibiotic Mechanisms Using
Comparative Genomics B. pseudomallei is naturally resis-
tant to many antibiotic classes, including aminoglycosides,
macrolides, fluoroquinolones, and the majority of β-lactams
[58]. The few available antibiotics for treating melioidosis can
fail in cases where acquired resistance or decreased suscepti-
bility develops over the course of treatment. This phenomenon
has now been documented for all antibiotics used to treat
B. pseudomallei infections, including carbapenems [25•, 59].
Comparative and functional genomics has greatly accelerated
our understanding of the molecular basis for decreased sus-
ceptibility or resistance towards antibiotics. This task can be
further simplified by genomic comparison of isogenic strains
retrieved from the same patient, one of which is antibiotic-
sensitive and the other antibiotic-resistant. To date, genomics
has been used to identify ceftazidime resistance that has arisen
following key SNP mutations in or duplication of the β-

lactamase PenA [22•, 25•], or by the entire loss of the
penicillin-binding protein 3 gene, BPSS1219 [24•]. In a sim-
ilar fashion, doxycycline resistance has recently been shown
to be associated with the loss of the efflux pump regulator
AmrR in concert with the SAM-dependent methyltransferase
mutation [23], and decreased susceptibility towards the carba-
penem antibiotic meropenem has been attributed to mutations
in AmrR [59]. As B. pseudomallei continues to find new ways
to evolve resistance towards antibiotics, genomics provides a
powerful tool for identifying known and novel mechanisms of
resistance. Knowledge of these mechanisms leads to more
accurate and faster diagnostics, the ability to provide more
effective “personalized” treatments for melioidosis patients,
enhanced antimicrobial stewardship, and targets for future in-
novative therapeutics.

Future Directions

Longer (e.g., PacBio, Oxford NanoPore) NGS reads, and plat-
forms that offer close-to-real-time analysis of sequence read
data (e.g. Oxford NanoPore) to enable data collection to be
stopped when sufficient coverage has been obtained [60], are
already paving the way for new and exciting advancements in
bacterial genomics. Longer reads allow genomes to be
“closed” by resolving regions that remain refractory
to complete resolution using short-read NGS methods due to
low-complexity sequences, paralogous loci, or structural rear-
rangements. The continued evolution of NGS technology
speed and capacity, and increased competition among NGS
providers, will further drive down the cost of sequencing
B. pseudomallei genomes to the point that such characteriza-
tion will be carried out routinely in both research and clinical
laboratories. A remaining challenge in genomics is the ability
to sequence and accurately parse haplotypes in cases of mixed
B. pseudomallei infections without the need for passaging and
sequencing single colonies [57]. NGS methods that character-
ize total gene expression (e.g., RNA-seq) and methylation
patterns (e.g., Methyl-seq) under different growth conditions,
including in vivo, are now being explored to gain further in-
sight into the biology of B. pseudomallei. Metagenomic and
metatranscriptomic approaches are adding yet another dimen-
sion in our understanding of the complex interaction between
infectious agents and their hosts.

Conclusion

The review has highlighted the crucial role that genomics has
played so far in answering fundamental questions about
B. pseudomallei origin, transmission, virulence, within-host
evolution, and antibiotic resistance mechanisms. These ques-
tions, many of which have been unresolved for many years
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and even decades, can now be quickly and unambiguously
addressed with this powerful and cost-effective technology.
The digitization and public availability of B. pseudomallei
strains via WGS has already begun to provide a rich and
invaluable resource for melioidosis researchers worldwide
that is facilitating comparison of strains on a global level.
New NGS technologies will enable researchers to address
even more complex questions concerning this important and
deadly pathogen.
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